Pulp & Paper

 

Machine condition monitoring based on oil analysis has become an important, if not mandatory, maintenance practice for pulp and paper companies. An effective oil analysis program will keep important manufacturing assets such as pumps, gears, bearings, compressors, engines, hydraulic systems and other oil-wetted machinery in operation by reducing unexpected failures and costly unscheduled downtime.

For pulp and paper companies the drying roll is at the heart of production and downtime can cost many thousands of dollars an hour for larger facilities. Consequently the oil-wetted machinery, in a paper rolling machine, consisting primarily of gears and bearings is of critical importance.

  • Overview
  • Challenges
  • Additives and Formulation
  • Used Lube Tests

In terms of deign, ICE can be two stroke or four stroke engine design

two-stroke (or two-cycleengine is a type of internal combustion engine that completes a power cycle with two strokes (up and down movements) of the piston during only one crankshaft revolution. This is in contrast to a four-stroke engine, which requires four strokes of the piston to complete a power cycle during two crankshaft revolutions. In a two-stroke engine, the end of the combustion stroke and the beginning of the compression stroke happen simultaneously, with the intake and exhaust (or scavenging) functions occurring at the same time.

 

     

   Two-stroke engines use their crankcase to pressurize the air-fuel mixture before transfer to the cylinder. Unlike four-stroke enginess, they cannot be lubricated by oil contained in the crankcase and sump: lubricating oil would be swept up and burnt with the fuel. Fuels supplied to two-stroke engines are mixed with oil so that it can coat the cylinders and bearing surfaces along its path. The ratio of gas to oil ranges from 30:1 to 50:1 by volume.

 

Large two-stroke engines, including diesels, normally use a sump lubrication system similar to four-stroke engines. The cylinder must be pressurized, but this is not done from the crankcase, but by an ancillary Roots-type blower or a specialized turbocharger (usually a turbo-compressor system) which has a "locked" compressor for starting (and during which it is powered by the engine's crankshaft), but which is "unlocked" for running (and during which it is powered by the engine's exhaust gases flowing through the turbine).

 In terms of fuel it can be liquid fuel Engines or gas fired engines

As the use of natural gas as a fuel source grows, an increasing number of stationary gas engines are being used to generate power and to move gas from the wellhead to the customer. Engine operators need to maximise the return on their investment, a demand that has led manufacturers to redesign their products. The changes have focused on increasing the engine’s efficiency and power output while reducing emissions such as NOx, methane and other volatile organic hydrocarbons.

Not only are the combustion temperatures and pressures higher, but also piston design changes put the top ring closer to the combustion zone. This means the lubricant here must handle higher temperatures, raising the concern of deposit formation, which may lead to ring sticking and engine damage.

Oil degradation

In high temperature gas engines, carbonaceous deposits occur in many different forms and locations – for example, ring-groove deposits and rocker cover sludge. It is essential for lubricants to either prevent deposits from forming or to stop them building up on engine surfaces.

However, despite these similarities the particles are not formed in the same way. Heavy-duty diesel (HDD) soot is formed from incomplete combustion of fuel, while in a lean burn gas engine operating on gas compromising primarily of methane, with a significant molar excess of oxygen, the level of incomplete combustion is likely to be negligible. It is much more likely that carbonaceous deposits in gas engines result from the incomplete combustion of lubricant present in the combustion chamber.

Comparison of gas engines and commercial vehicle soot

The main function of motor oil is to:

Provides Lubrication

by reducing friction and wear on moving parts 

Cleans out Sludge

Clean the engine from sludge (one of the functions of dispersants) and varnish (detergents) to prevent blockage.

Neutralizes Acids

It also neutralizes acids that originate from fuel combustion and from oxidation of the lubricant (detergents),

Inhibits corrosion and oxidation

Another function of engine oil is preventing corrosion. Motor oil protects the cylinder blocks from rust.

Improves sealing of piston rings

Cools the engine by carrying heat away from moving parts

Types of Lubricant Additives

There are many types of chemical additives mixed into base oils to enhance the properties of the base oil, to suppress some undesirable properties of the base oil and possibly to impart some new properties.

Additives typically make up about 0.1 to 30 percent of the finished lubricating oil, depending upon the target application of the lubricant.

Conventional Lubricant Additives

These include the following general types of additives:

Anti-oxidants

Oxidation is the general attack of the weakest components of the base oil by oxygen in the air.  It occurs at all temperatures all of the time but is accelerated at higher temperatures and by the presence of water, wear metals and other contaminants. 

It ultimately causes acids (which produce corrosion) and sludge (which results in surface deposits and viscosity to increase) to form.  Oxidation inhibitors, as they are also called, are used to extend the operating life of the oil. 

They are sacrificial additives that are consumed while performing their duty of delaying the onset of oxidation, thus protecting the base oil.  They are present in almost every lubricating oil and grease.

Rust and Corrosion Inhibitors

Rust Inhibitor

These additives reduce or eliminate internal rust and corrosion by neutralizing acids and forming a chemical protective barrier to repel moisture from metal surfaces. 

Some of these inhibitors are specific to protecting certain metals. Therefore, an oil may contain several corrosion inhibitors.  Again, they are common in almost every oil and grease.  Metal deactivators are another form of corrosion inhibitor.

Viscosity Index Improvers

Viscosity index improvers are very large polymer additives that partially prevent the oil from thinning out (losing viscosity) as the temperature increases.  These additives are used extensively when blending multi-grade engine oils such as SAE 5W-30 or SAE 15W-40.

They are also responsible for better oil flow at low temperatures, resulting in reduction in wear and improved fuel economy.  In addition, VI improvers are used to achieve high-VI hydraulic and gear oils for improved start-up and lubrication at low temperatures.

To visualize how a VI-improver additive functions, think of the VI improver as an octopus or coil spring that stays coiled up in a ball at low temperatures and has very little effect on the oil viscosity

Then, as the temperature rises, the additive (or octopus) expands or extends its arms (making it larger) and prevents the oil from thinning out too much at high temperatures. 

VI improvers do have a couple of negative features.  The additives are large (high molecular weight) polymers, which makes them susceptible to being chopped or cut up into small pieces by machine components (shearing forces).  Gears are notoriously hard on VI-improver additives. 

Permanent shearing of the VI-improver additive can cause significant viscosity losses, which can be detected with oil analysis.  A second form of viscosity loss occurs due to high shearing forces in the load zone of frictional surfaces (e.g., in journal bearings). 

It is thought that the VI-improver additive loses its shape or uniform orientation and therefore loses some of its thickening ability. 

The viscosity of the oil temporarily drops within the load zone and then rebounds to its normal viscosity after it leaves the load zone.  This characteristic actually aids in the reduction of fuel consumption.

There are several different types of VI improvers (olefin copolymers are common).  High-quality VI improvers are less susceptible to permanent shear loss than low-cost, low-quality VI improvers. 

Anti-wear (AW) Agents

Anti-wear AW Agents

These additives are typically used to protect machine parts from wear and loss of metal during boundary lubrication conditions.  They are polar additives that attach to frictional metal surfaces. 

They react chemically with the metal surfaces when metal-to-metal contact occurs in conditions of mixed and boundary lubrication. 

They are activated by the heat of contact to form a film that minimizes wear.  They also help protect the base oil from oxidation and the metal from damage by corrosive acids. 

These additives become “used up” by performing their function, after which adhesive wear damage will increase.  They are typically phosphorus compounds, with the most common being zinc dialkyldithiophosphate (ZDDP). 

There are different versions of ZDDP — some intended for hydraulic applications and others for the higher temperatures encountered in engine oils.  ZDDP also has some anti-oxidant and corrosion-inhibition properties.  In addition, other types of phosphorous-based chemicals are used for anti-wear protection (e.g., TCP). 

Extreme Pressure (EP) Additives

These additives are more chemically aggressive than AW additives.  They react chemically with metal (iron) surfaces to form a sacrificial surface film that prevents the welding and seizure of opposing asperities caused by metal-to-metal contact (adhesive wear).  

They are activated at high loads and by the high contact temperatures that are created.  They are typically used in gear oils and give those oils that unique, strong sulphur smell.  These additives usually contain sulphur and phosphorus compounds (and occasionally boron compounds).

They can be corrosive toward yellow metals, especially at higher temperatures, and therefore should not be used in worm gear and similar applications where copper-based metals are used.  Some chlorine-based EP additives exist but are rarely used due to corrosion concerns.

 

 

Anti-wear additives and extreme pressure agents form a large group of chemical additives that carry out their function of protecting metal surfaces during boundary lubrication by forming a protective film or barrier on the wear surfaces. 

As long as the hydrodynamic or elastohydrodynamic oil film is maintained between the metal surfaces, boundary lubrication will not occur and these boundary lubrication additives will not be required to perform their function. 

When the oil film does break down and asperity contact is made under high loads or high temperatures, these boundary lubrication additives protect the wearing surfaces.

Detergents

Detergents perform two functions.  They help to keep hot metal components free of deposits (clean) and neutralize acids that form in the oil.  Detergents are primarily used in engine oils and are alkaline or basic in nature.  

They form the basis of the reserve alkalinity of engine oils, which is referred to as the base number (BN).  They are typically materials of calcium and magnesium chemistry.  Barium-based detergents were used in the past but are rarely used now.

Since these metal compounds leave an ash deposit when the oil is burned, they may cause unwanted residue to form in high-temperature applications.  Due to this ash concern, many OEMs are specifying low-ash oils for equipment operating at high temperatures.  A detergent additive is normally used in conjunction with a dispersant additive.

Dispersants

Dispersant Lubricant Additives

Dispersants are mainly found in engine oil with detergents to help keep engines clean and free of deposits.  The main function of dispersants is to keep particles of diesel engine soot finely dispersed or suspended in the oil (less than 1 micron in size). 

The objective is to keep the contaminant suspended and not allow it to agglomerate in the oil so that it will minimize damage and can be carried out of the engine during an oil change.  Dispersants are generally organic and ashless.  As such, they are not easily detectable with conventional oil analysis. 

The combination of detergent/dispersant additives allows more acid compounds to be neutralized and more contaminant particles to stay suspended.  As these additives perform their functions of neutralizing acids and suspending contaminants, they will eventually exceed their capacity, which will necessitate an oil change.

Anti-foaming Agents

Anti-foaming Agents

The chemicals in this additive group possess low interfacial tension, which weakens the oil bubble wall and allows the foam bubbles to burst more readily.  They have an indirect effect on oxidation by reducing the amount of air-oil contact. 

Some of these additives are oil-insoluble silicone materials that are not dissolved but rather dispersed finely in the lubricating oil.  Very low concentrations are usually required.  If too much anti-foaming additive is added, it can have a reverse effect and promote further foaming and air entrainment.

Friction Modifiers

Friction modifiers are typically used in engine oils and automatic transmission fluids to alter the friction between engine and transmission components.  In engines, the emphasis is on lowering friction to improve fuel economy. 

In transmissions, the focus is on improving the engagement of the clutch materials.  Friction modifiers can be thought of as anti-wear additives for lower loads that are not activated by contact temperatures.

Pour Point Depressants

The pour point of an oil is approximately the lowest temperature at which an oil will remain fluid.  Wax crystals that form in paraffinic mineral oils crystallize (become solid) at low temperatures.  The solid crystals form a lattice network that inhibits the remaining liquid oil from flowing. 

The additives in this group reduce the size of the wax crystals in the oil and their interaction with each other, allowing the oil to continue to flow at low temperatures.

Demulsifiers

Demulsifier additives prevent the formation of a stable oil-water mixture or an emulsion by changing the interfacial tension of the oil so that water will coalesce and separate more readily from the oil.  This is an important characteristic for lubricants exposed to steam or water so that free water can settle out and be easily drained off at a reservoir.

Emulsifiers

Emulsifiers are used in oil-water-based metal-working fluids and fire-resistant fluids to help create a stable oil-water emulsion.  The emulsifier additive can be thought of as a glue binding the oil and water together, because normally they would like to separate from each other due to interfacial tension and differences in specific gravity.

Biocides

Biocides are often added to water-based lubricants to control the growth of bacteria.

Tackifiers

Tackifiers are stringy materials used in some oils and greases to prevent the lubricant from flinging off the metal surface during rotational movement.

To be acceptable to blenders and end users alike, the additives must be capable of being handled in conventional blending equipment, stable in storage, free of offensive odor and be non‑toxic by normal industrial standards. 

Since many are highly viscous materials, they are generally sold to the oil formulator as concentrated solutions in a base oil carrier.

A couple of key points about additives:
More additive is not always better.  The old saying, “If a little bit of something is good, then more of the same is better,” is not necessarily true when using oil additives. 

As more additive is blended into  the oil, sometimes there isn’t any more benefit gained, and at times the performance actually deteriorates.  In other cases, the performance of the additive doesn’t improve, but the duration of service does improve.

Increasing the percentage of a certain additive may improve one property of an oil while at the same time degrade another.  When the specified concentrations of additives become unbalanced, overall oil quality can be affected. 

Some additives compete with each other for the same space on a metal surface.  If a high concentration of an anti-wear agent is added to the oil, the corrosion inhibitor may become less effective.  The result may be an increase in corrosion-related problems.

How Oil Additives Get Depleted

It is very important to understand that most of these additives get consumed and depleted by:

  1. decomposition” or breakdown,
  2. adsorption” onto metal, particle and water surfaces, and
  3. separation” due to settling or filtration.

The adsorption and separation mechanisms involve mass transfer or physical movement of the additive.

For many additives, the longer the oil remains in service, the less effective the remaining additive package is in protecting the equipment. 

When the additive package weakens, viscosity increases, sludge begins to form, corrosive acids start to attack bearings and metal surfaces, and/or wear begins to increase.  If oils of low quality are used, the point at which these problems begin will occur much sooner.

It is for these reasons that top-quality lubricants meeting the correct industry specifications (e.g., API engine service classifications) should always be selected.  The following table can be used as a guide for a more thorough understanding of additive types and their functions in engine oil formulations.

 

SURFACE PROTECTIVE ADDITIVES
ENGINE LUBRICANTS

ADDITIVE TYPE

PURPOSE

TYPICAL COMPOUNDS

FUNCTIONS

Anti-Wear Agent

Reduce friction and wear, and prevent scoring and seizure

Zinc dithiophosphates, organic phosphates and acid phosphates; organic sulphur and chlorine compounds; sulphurized fats, sulfides and disulfides

Chemical reaction with the metal surface to form a film with lower shear strength than the metal, thereby preventing metal-to-metal contact

Corrosion & Rust Inhibitor

Prevent corrosion and rusting of metal parts in contact with the lubricant

Zinc dithiophosphates, metal phenolates, basic metal sulfonates, fatty acids and amines

Preferential adsorption of polar constituent on metal surface to provide a protective film and/or neutralization of corrosive acids

Detergent

Keep surfaces free of deposits and neutralize corrosive acids

Metallo-organic compounds of barium, calcium and magnesium phenolates, phosphates and sulfonates

Chemical reaction with sludge and varnish precursors to neutralize them and keep them soluble

Dispersant

Keep insoluble soot dispersed in the lubricant

Polymeric alkylthiophosphonates and alkylsuccinimides, organic complexes containing nitrogen compounds

Contaminants are bonded by polar attraction to dispersant molecules, prevented from agglomerating and kept in suspension due to solubility of dispersant

Friction Modifier

Alter coefficient of friction

Organic fatty acids and amines, lard oil, high molecular weight organic phosphorus and phosphoric acid esters

Preferential adsorption of surface-active materials

PERFORMANCE ADDITIVES
ENGINE LUBRICANTS

Pour Point Depressant

Enable lubricant to flow at low temperatures

Alkylated naphthalene and phenolic polymers, polymethacrylates

Modify wax crystal formation to reduce interlocking

Seal Swell Agent

Swell elastomeric seals

Organic phosphates, aromatics, halogenated hydrocarbons

Chemical reaction with elastomer to cause slight swell

Viscosity Improver

Reduce the rate of viscosity change with temperature

Polymers and copolymers of methacrylates, butadiene olefins and alkylated styrenes

Polymers expand with increasing temperature to counteract oil thinning

LUBRICANT PROTECTIVE ADDITIVES
ENGINE LUBRICANTS

Anti-Foaming

Prevent lubricant from forming a persistent foam

Silicone polymers and organic copolymers

Reduce surface tension to speed collapse of foam

Anti-Oxidant

Retard oxidative decomposition

Zinc dithiophosphates, hindered phenols, aromatic amines, sulphurized phenols

Decompose peroxides and terminate free-radical reactions

Metal Deactivator

Reduce catalytic effect of metals on oxidation rate

Organic complexes containing nitrogen or sulphur, amines, sulphides and phosphites

Form inactive film on metal surfaces by complexing with metallic ions

 

 

 

Typical Tests

 Wear

elemental  wear, additives and contaminants

 

Ferrous wear - Ferrous wear measurement is a critical requirement for monitoring machine condition. The high sensitivity magnetometer measures and reports ferrous content in ppm/ml, and provides ferrous particle count and size distribution for large ferrous particles.

 Chemistry

Total BASE Number (TBN) - TBN is measured to determine the corrosive potential of lubrication oils. If the TAN gets too high the oil can induce corrosion of machine parts and should be changed.

Total BASE Number (TAN) - TAN is measured to determine the corrosive potential of lubrication oils. If the TAN gets too high the oil can induce corrosion of machine parts and should be changed.

Viscosity and Viscosity Index - The main function of lubrication oil is to create and maintain a lubrication film between two moving metal surfaces. Insuring the viscosity is within recommended ranges is one of the most important tests one can run on lube oil. 

 Contamination

Water - Water contamination in industrial oils can cause severe issues with machinery components. The presence of water can alter the viscosity of a lubricant as well as cause chemical changes resulting in additive depletion and the formation of acids, sludge, and varnish. 

coollant contamination

combustion by products  " sulfation nitration soot

OXidation

Fuel Dilution

 

 

 

  • Overview
  • Challenges
  • Additives and Formulation
  • Used Lube Tests

4 Main Types of Industrial Gearbox

An industrial gearbox is an enclosed system that transmits mechanical energy to an output device, for an example a motor. A gearbox can be used to modify the ratio of speed, torque and rate of rotation sent to the output device. Gearboxes have a wide range of applications and come in 4 main varieties.

Planetary Gearbox

This type of Gearbox is popular in cutting edge technologies like Robotics and 3D printing. A Planetary Gearbox has a central Sun Gear is surrounded by three of four Planet Gears. These are all held together through an outer ring gear with internal teeth. This design spreads the power equally through the gears and enables a Planetary Gear System to achieve a high torque in a small space. Planetary Gear Boxes are known for their high endurance and accuracy.

Worm Gearbox

Worm Gearboxes are most often used to drive heavy duty operations. This type of gear incorporates a large diameter worm (or screw) which meshes with the teeth on the peripheral area of the gear. This arrangement allows the user to determine rotational speed and allows a higher torque to be transmitted. Worm gears are used to transmit power at 90 degrees and applications include elevators and conveyor belts.

Helical Gearbox

Helical Gearboxes are compact in size and use a low amount of power. The teeth on a Helical Gear are cut to an angle to the face of the gear and so during rotation, when two of the teeth start to engage the contact is gradual. Starting at one end of the tooth and maintaining contact as the gear rotates into full engagement. This arrangement means the gearbox will run more smoothly and can accommodate high load angles. It also means that a Helical Gearbox can transmit motion between parallel or right angles shafts.

Bevel Gearbox

Bevel Gears have curbed teeth located on cone shaped surfaces which close to the rim of the unit. They are used to provide rotary motions between non-parallel shafts and have a wide range of applications including in Rolling Stock and the mining industry.

 

Gear pump[edit]
 
Gear pump

This is the simplest form of rotary positive-displacement pumps. It consists of two meshed gears that rotate in a closely fitted casing. The tooth spaces trap fluid and force it around the outer periphery. The fluid does not travel back on the meshed part, because the teeth mesh closely in the center. Gear pumps see wide use in car engine oil pumps and in various hydraulic power packs.

Screw pump[edit]
 
Screw pump

screw pump is a more complicated type of rotary pump that uses two or three screws with opposing thread — e.g., one screw turns clockwise and the other counterclockwise. The screws are mounted on parallel shafts that have gears that mesh so the shafts turn together and everything stays in place. The screws turn on the shafts and drive fluid through the pump. As with other forms of rotary pumps, the clearance between moving parts and the pump's casing is minimal.

Progressing cavity pump[edit]

Widely used for pumping difficult materials, such as sewage sludge contaminated with large particles, this pump consists of a helical rotor, about ten times as long as its width. This can be visualized as a central core of diameter x with, typically, a curved spiral wound around of thickness half x, though in reality it is manufactured in a single casting. This shaft fits inside a heavy-duty rubber sleeve, of wall thickness also typically x. As the shaft rotates, the rotor gradually forces fluid up the rubber sleeve. Such pumps can develop very high pressure at low volumes.

Cavity pump
Roots-type pumps[edit]
 
A Roots lobe pump

Named after the Roots brothers who invented it, this lobe pump displaces the liquid trapped between two long helical rotors, each fitted into the other when perpendicular at 90°, rotating inside a triangular shaped sealing line configuration, both at the point of suction and at the point of discharge. This design produces a continuous flow with equal volume and no vortex. It can work at low pulsation rates, and offers gentle performance that some applications require.

Applications include:

Peristaltic pump[edit]
 
360° Peristaltic Pump

peristaltic pump is a type of positive-displacement pump. It contains fluid within a flexible tube fitted inside a circular pump casing (though linear peristaltic pumps have been made). A number of rollersshoes, or wipers attached to a rotor compresses the flexible tube. As the rotor turns, the part of the tube under compression closes (or occludes), forcing the fluid through the tube. Additionally, when the tube opens to its natural state after the passing of the cam it draws (restitution) fluid into the pump. This process is called peristalsis and is used in many biological systems such as the gastrointestinal tract.

Plunger pumps[edit]

Plunger pumps are reciprocating positive-displacement pumps.

These consist of a cylinder with a reciprocating plunger. The suction and discharge valves are mounted in the head of the cylinder. In the suction stroke, the plunger retracts and the suction valves open causing suction of fluid into the cylinder. In the forward stroke, the plunger pushes the liquid out of the discharge valve. Efficiency and common problems: With only one cylinder in plunger pumps, the fluid flow varies between maximum flow when the plunger moves through the middle positions, and zero flow when the plunger is at the end positions. A lot of energy is wasted when the fluid is accelerated in the piping system. Vibration and water hammer may be a serious problem. In general, the problems are compensated for by using two or more cylinders not working in phase with each other.

 

 

Types[edit]

The main and important types of gas compressors are illustrated and discussed below:

Gas-compressors-types-yed.png
 

 

Gearboxes, differentials, final drives and planetaries should be closely monitored for dirt and water contamination, although the type of wear occurring is usually the biggest concern.

Cooling, controlling contamination, reducing friction, and creating fluid seals are just a few of the many important responsibilities the lubricant serves. The chosen lubricant must fill all of these roles effectively and efficiently to promote healthy and long equipment life

Transmission fluid acts as a lubricant and as a cooling agent for all moving parts of the transmission. It is the lifeblood of the transmission and regular checks and changes are vital to the transmission system.

ATF exposed to the high heat generated by automatic transmissions tend to degenerate and break down becoming inefficient.

Seal Concerns

Mechanical seals are often integral parts of a component or system. If they are not considered when changes are made to the system, leaks, failure or downtime may occur.

Contamination, both from external and internal sources, is a significant issue with seals. Among the parameters associated with contamination to trend in your oil analysis reports would be the particle count number and the ISO cleanliness code. If your sample results return with continual increases in the particle count and low levels of ferrous material, this may lead to seal damage.

Viscosity is a critical property of any lubricant, yet it often is overlooked with gearbox seals. This parameter is important because the oil must be thick enough to maintain the proper film thickness between the two surfaces but thin enough to flow between the mating gear tooth surfaces. If the viscosity falls out of the specified range, internal contamination due to gear wear is likely. As noted above, this type of contamination can result in seal degradation.

Keep in mind that surface roughness, gear geometry and mating surface materials will also play a role in the life of the seals. However, these constraints are more difficult to manipulate than sustaining lubricant limits.

Although compatibility typically is only an issue when switching lubricants, it is another concern for seal life. Changing the base oil from mineral to synthetic while altering the additive packages that make up the lubricant can have a dramatic effect on the seals. When changing lubricants, consider not only the compatibility between the two lubricants but also how the new lubricant will react with the seal material. Swelling, erosion, blistering, depolymerization and excessive wear are all possible failure mechanisms when seals and lubricants do not function in a cohesive environment.

 

Foaming is a common problem with oil-lubricated components.

Foam is a collection of small bubbles of air that accumulate on or near the surface of the fluid. In severe cases, the foam can leak out of the machine through breathers, sight glasses and dipsticks. Foam is an efficient thermal insulator, so the temperature of the oil can become difficult to control. The presence of air bubbles in the fluid can lead to excessive oxidation, cavitation, the reduction of lubricating properties of the oil and hydraulic system failure.

Causes

The causes of foaming are many. The most common include:

  • Water contamination

  • Solids contamination

  • Depleted defoamant (possibly due to the use of excessively fine filtration and electrostatic separation technologies)

  • Mechanical issues (causing excessive aeration of the fluid)

  • Overfilling of the sump with splash- and bath-lubricated compartments

  • Cross contamination of the fluid with the wrong lubricant

  • Contamination of the fluid with grease

  • Too much defoamant additive, either by incorrect formulation or by incorrect reconstruction (sweetening) of the additive package

Types of Lubricant Additives

There are many types of chemical additives mixed into base oils to enhance the properties of the base oil, to suppress some undesirable properties of the base oil and possibly to impart some new properties.

Additives typically make up about 0.1 to 30 percent of the finished lubricating oil, depending upon the target application of the lubricant.

Conventional Lubricant Additives

These include the following general types of additives:

Anti-oxidants

Oxidation is the general attack of the weakest components of the base oil by oxygen in the air.  It occurs at all temperatures all of the time but is accelerated at higher temperatures and by the presence of water, wear metals and other contaminants. 

It ultimately causes acids (which produce corrosion) and sludge (which results in surface deposits and viscosity to increase) to form.  Oxidation inhibitors, as they are also called, are used to extend the operating life of the oil. 

They are sacrificial additives that are consumed while performing their duty of delaying the onset of oxidation, thus protecting the base oil.  They are present in almost every lubricating oil and grease.

Rust and Corrosion Inhibitors

Rust Inhibitor

These additives reduce or eliminate internal rust and corrosion by neutralizing acids and forming a chemical protective barrier to repel moisture from metal surfaces. 

Some of these inhibitors are specific to protecting certain metals. Therefore, an oil may contain several corrosion inhibitors.  Again, they are common in almost every oil and grease.  Metal deactivators are another form of corrosion inhibitor.

 

Anti-wear (AW) Agents

Anti-wear AW Agents

These additives are typically used to protect machine parts from wear and loss of metal during boundary lubrication conditions.  They are polar additives that attach to frictional metal surfaces. 

They react chemically with the metal surfaces when metal-to-metal contact occurs in conditions of mixed and boundary lubrication. 

They are activated by the heat of contact to form a film that minimizes wear.  They also help protect the base oil from oxidation and the metal from damage by corrosive acids. 

These additives become “used up” by performing their function, after which adhesive wear damage will increase.  They are typically phosphorus compounds, with the most common being zinc dialkyldithiophosphate (ZDDP). 

There are different versions of ZDDP — some intended for hydraulic applications and others for the higher temperatures encountered in engine oils.  ZDDP also has some anti-oxidant and corrosion-inhibition properties.  In addition, other types of phosphorous-based chemicals are used for anti-wear protection (e.g., TCP). 

Extreme Pressure (EP) Additives

These additives are more chemically aggressive than AW additives.  They react chemically with metal (iron) surfaces to form a sacrificial surface film that prevents the welding and seizure of opposing asperities caused by metal-to-metal contact (adhesive wear).  

They are activated at high loads and by the high contact temperatures that are created.  They are typically used in gear oils and give those oils that unique, strong sulphur smell.  These additives usually contain sulphur and phosphorus compounds (and occasionally boron compounds).

They can be corrosive toward yellow metals, especially at higher temperatures, and therefore should not be used in worm gear and similar applications where copper-based metals are used.  Some chlorine-based EP additives exist but are rarely used due to corrosion concerns.

 

 

Anti-wear additives and extreme pressure agents form a large group of chemical additives that carry out their function of protecting metal surfaces during boundary lubrication by forming a protective film or barrier on the wear surfaces. 

As long as the hydrodynamic or elastohydrodynamic oil film is maintained between the metal surfaces, boundary lubrication will not occur and these boundary lubrication additives will not be required to perform their function. 

When the oil film does break down and asperity contact is made under high loads or high temperatures, these boundary lubrication additives protect the wearing surfaces.

 

 

 

Anti-foaming Agents

Anti-foaming Agents

The chemicals in this additive group possess low interfacial tension, which weakens the oil bubble wall and allows the foam bubbles to burst more readily.  They have an indirect effect on oxidation by reducing the amount of air-oil contact. 

Some of these additives are oil-insoluble silicone materials that are not dissolved but rather dispersed finely in the lubricating oil.  Very low concentrations are usually required.  If too much anti-foaming additive is added, it can have a reverse effect and promote further foaming and air entrainment.

Friction Modifiers

Friction modifiers are typically used in engine oils and automatic transmission fluids to alter the friction between engine and transmission components.  In engines, the emphasis is on lowering friction to improve fuel economy. 

In transmissions, the focus is on improving the engagement of the clutch materials.  Friction modifiers can be thought of as anti-wear additives for lower loads that are not activated by contact temperatures.

Pour Point Depressants

The pour point of an oil is approximately the lowest temperature at which an oil will remain fluid.  Wax crystals that form in paraffinic mineral oils crystallize (become solid) at low temperatures.  The solid crystals form a lattice network that inhibits the remaining liquid oil from flowing. 

The additives in this group reduce the size of the wax crystals in the oil and their interaction with each other, allowing the oil to continue to flow at low temperatures.

Demulsifiers

Demulsifier additives prevent the formation of a stable oil-water mixture or an emulsion by changing the interfacial tension of the oil so that water will coalesce and separate more readily from the oil.  This is an important characteristic for lubricants exposed to steam or water so that free water can settle out and be easily drained off at a reservoir.

Emulsifiers

Emulsifiers are used in oil-water-based metal-working fluids and fire-resistant fluids to help create a stable oil-water emulsion.  The emulsifier additive can be thought of as a glue binding the oil and water together, because normally they would like to separate from each other due to interfacial tension and differences in specific gravity.

Biocides

Biocides are often added to water-based lubricants to control the growth of bacteria.

Tackifiers

Tackifiers are stringy materials used in some oils and greases to prevent the lubricant from flinging off the metal surface during rotational movement.

To be acceptable to blenders and end users alike, the additives must be capable of being handled in conventional blending equipment, stable in storage, free of offensive odor and be non‑toxic by normal industrial standards. 

Since many are highly viscous materials, they are generally sold to the oil formulator as concentrated solutions in a base oil carrier.

A couple of key points about additives:
More additive is not always better.  The old saying, “If a little bit of something is good, then more of the same is better,” is not necessarily true when using oil additives. 

As more additive is blended into  the oil, sometimes there isn’t any more benefit gained, and at times the performance actually deteriorates.  In other cases, the performance of the additive doesn’t improve, but the duration of service does improve.

Increasing the percentage of a certain additive may improve one property of an oil while at the same time degrade another.  When the specified concentrations of additives become unbalanced, overall oil quality can be affected. 

Some additives compete with each other for the same space on a metal surface.  If a high concentration of an anti-wear agent is added to the oil, the corrosion inhibitor may become less effective.  The result may be an increase in corrosion-related problems.

How Oil Additives Get Depleted

It is very important to understand that most of these additives get consumed and depleted by:

  1. decomposition” or breakdown,
  2. adsorption” onto metal, particle and water surfaces, and
  3. separation” due to settling or filtration.

The adsorption and separation mechanisms involve mass transfer or physical movement of the additive.

For many additives, the longer the oil remains in service, the less effective the remaining additive package is in protecting the equipment. 

When the additive package weakens, viscosity increases, sludge begins to form, corrosive acids start to attack bearings and metal surfaces, and/or wear begins to increase.  If oils of low quality are used, the point at which these problems begin will occur much sooner.

 

 

Typical Tests

Recommended oil analysis test packages for gear drives

table for gearbox blog post.jpg

 

Viscosity

Oil Splash_BS_23706392.jpgThe resistance of a fluid to flow. Viscosity is the most important lubricant physical property for gear drives. Lubricants must have suitable flow characteristics to insure that an adequate supply of oil reaches lubricated parts at various operating temperatures. The viscosity of lubricants varies depending on their classification or grade, as well as the degree of oxidation and contamination in service. If viscosity of the lubricant differs by more than 10% from nominal grade, a change of oil is typically recommended by the lubricant supplier. Oil viscosity is expected to rise over time and use, while a decrease in viscosity is considered to be more serious than an increase. Therefore, a working alarm range is +20% to-10%, i.e. not more than 20% over nominal, and not less than 10% under nominal grade.

 

Ferrous Density

FerroCheck with Grease boat.jpgA measure of the total amount of ferrous magnetic debris present in ppm.  Measured with a magnetometer, ferrous debris ranging in size from sub micron to visible will induce a change in electrical current proportional to the amount of metal present. Trending the amount of total ferrous debris is a key indicator for any gear box and should be included on all screening test packages.  The actual value in ppm is trended.  An increase of 10% in the wear rate indicates an abnormal change.

Water

Usually not desirable in oil, water can be detected visually if gross contamination is present (cloudy appearance). Excessive water in a system destroys a lubricant's ability to separate opposing moving parts, allowing severe wear to occur with resulting high frictional heat. Water contamination should not exceed 0.25 % for most gear drives, though some pressurized systems have lower limits.

Oil_in_water_image.jpg 

Oxidation by Infrared Analysis

Infrared Spectroscopy is a great technique for detecting organic contaminants, water and oil degradation products in a used oil sample. During a lubricant's service life, oxidation products accumulate, causing the oil to become degraded, and in most instances, slightly acidic. If oxidation becomes severe, the lubricant will corrode the critical gear surfaces. The greater the "oxidation number", the more oxidation is present. Conditions such as varnishing, sludge deposits, sticky rings, lacquering and filter plugging occur in systems with oxidation problems. Infrared spectroscopy also indicates contamination due to free water and glycol antifreeze, There are guidelines issued for oxidation numbers and liquid contaminants by manufacturers, but this is essentially a trending tool.

Total Acid Number

Total Acid Number (TAN) is a titration method designed to indicate the relative acidity in a lubricant. The acid number is used as a guide to follow the oxidative degeneration of an oil in service. Oil changes are often indicated when the TAN value reaches a predetermined level for a given lubricant and application. An abrupt rise in TAN would be indicative of abnormal operating conditions (e.g. overheating) that require investigation. Most lubricant suppliers give TAN condemnation limits in the bulletins. Usually a rise of 0.5 over the starting value is cause for concern.  Always know your starting new oil value - it can be higher than expected for some gear oils due to the additive packages present.

Particle Count

Particle count is a method used to count and classify particulate in a fluid according to accepted size ranges, usually according to ISO 4406 and SAE 4059.  This is a very helpful test to improve reliability as reducing particulates in the oil will extend the life of the gearbox.  It is recommended for pressure lubricated gears and is considered optional for bath lubricated gear systems, since there is no point in measuring particle count if no filters are present, or there is no plan to filter the oil (using a cart etc). 

Ferrous Particle Count

Ferrous particle count is a technique that quantifies the ferrous debris present according to size and quantity, not according to its concentration.  Built in magnetometers are commonly used today to measure events as oil flows through the magnetometer. Direct Read ferrography systems are also used to monitor and evaluate ferrous wear. These systems are useful for understanding the quantity and size of ferrous debris particles and they augment the spectroscopy and ferrous density techniques. These techniques measure the ratio of large and small ferrous particles in the sample. This data may be used to calculate the wear particle concentration and the severity indexes and to set alarms when these limits reach a certain level. 

Elemental  Spectroscopy

Elemental spectroscopy is a technique for detecting and quantifying metallic elements in used oil resulting from wear, contamination and additives. The oil sample is energized to make each element emit or absorb a quantifiable amount of energy, which indicates the element's concentration in the oil. The results reflect the concentration of all dissolved metals (from additive packages) and particulates. This test is the backbone for all on-site and off-site oil analysis tools , as it provides information on machine, contamination and wear condition relatively quickly and accurately. Its major limitation is that its particle detection efficiency is poor for particles 5 microns in size or larger, which is why the Ferrous density must be measured first.  

WDA (Wear Debris Analysis/(Analytical Ferrography)

WDA describes either a patch or an analytical technique that separates magnetic wear particles from the oil and deposits them on a glass slide known as a ferrogram. Microscopic examination or the slide or patch permits characterization of the wear mode and probable sources of wear in the machine. This technique is known as analytical ferrography. It is an excellent indicator of abnormal ferrous and non ferrous wear. The major drawback of this technique is that it typically requires a trained analyst. 

 

 

 

  • Overview
  • Challenges
  • Additives and Formulation
  • Used Lube Tests

Gas turbine

A gas turbine, also called a combustion turbine

 

 

 

Atmospheric air flows through the compressor that brings it to higher pressure; energy is then added by spraying fuel into the air and igniting it so that the combustion generates a high-temperature flow. This high-temperature pressurized gas enters a turbine, producing a shaft work output in the process, used to drive the compressor.

The unused energy comes out in the exhaust gases that can be repurposed for external work, such as directly producing thrust in a TerboJet Engine, or rotating a second, independent turbine (known as a power turbine) that can be connected to a fan, propeller, or electrical generator.

 Main Types:

1-   Jet engines

2-   Turboprop engines

3-   Aeroderivative gas turbines

4-   Industrial gas turbines for power generation

5-   Auxiliary power units

6-   Industrial gas turbines for mechanical drive

 

Internal vs External Compustion Gas Turbines

Most gas turbines are internal combustion engines but it is also possible to manufacture an external combustion gas turbine which Most gas turbines are internal combustion engines but it is also possible to manufacture an external combustion gas turbine where  a heat exchanger  is used and only clean air with no combustion products travels through the power turbine,. Those systems are usually indicated as EFGT (Externally Fired Gas Turbine) or IFGT (Indirectly Fired Gas Turbine).

 

Steam turbine

steam turbine is a machine that extracts thermal energy from pressurized steam and uses it to do mechanical work on a rotating output shaft.

 

 

The rotor of a modern steam turbine used in a Neuclear power plant

 

 

 

 

Turbine types include:

1-Condensing turbines

2- Non-condensing turbines

3- Reheat turbines

4- Extracting turbines

 

 

Combined cycle power plant

combined cycle power plant is an assembly of heat engines that work in tandem from the same source of heat, converting it into mechanical energy.The principle is that after completing its cycle in the first engine, the working fluid (the exhaust) is still hot enough that a second subsequent heat engine can extract energy from the heat in the exhaust. Usually the heat passes through a heat exchanger so that the two engines can use different working fluids. The overall efficiency of the system can be increased by 50–60%. That is, from an overall efficiency of say 34% (for a simple cycle), to as much as 64% (for a combined cycle)

 

Many of the problems that result in turbine downtime are lubricant-related, making it imperative that power plant management and maintenance groups work together to develop a turbine lubrication reliability programme for their plants. 

WATER

A well-maintained steam turbine oil with moderate makeup rates should last 20 to 30 years. When a steam turbine oil fails early through oxidation, it is often due to water contamination. Water reduces oxidation stability and supports rust formation, which among other negative effects, acts as an oxidation catalyst.

Varying amounts of water will constantly be introduced to the steam turbine lubrication systems through gland seal leakage. Because the turbine shaft passes through the turbine casing, low-pressure steam seals are needed to minimize steam leakage or air ingress leakage to the vacuum condenser.

Heat

 

Heat will also cause reduced turbine oil life through increased oxidation. In utility steam turbine applications, it is common to experience bearing temperatures of 120ºF to 160ºF (49ºC to 71ºC) and lube oil sump temperatures of 120ºF (49ºC). The impact of heat is generally understood to double the oxidation rate for every 18 degrees above 140ºF (10 degrees above 60ºC).

A conventional mineral oil will start to rapidly oxidize at temperatures above 180ºF (82ºC). Most tin-babbited journal bearings will begin to fail at 250ºF (121ºC), which is well above the temperature limit of conventional turbine oils. High-quality antioxidants can delay thermal oxidation but excess heat and water must be minimized to gain long turbine oil life.

Varnish formation

Due to the high operating temperatures found in turbine systems, improperly formulated oils can thermally degrade, oxidize, and form varnish. Varnish is found on critical turbine surfaces and starts as a soft film, gradually hardening into a lacquer which is not easily removed. The lacquer can act as an insulating film that interferes with heat transfer. It can also trap particulates such as wear metals. In addition, the varnish can cause valves to stick, causing the turbine not to start. The varnish layer which forms on bearings takes up critical clearance space for the oil film, which can result in higher temperatures and the formation of more varnish.

Varnish precursors form when polar long chain acids, aldehydes, and ketones form in the oil from oxidation and thermal degradation of the lubricant. These precursors eventually combine or react with each other and form longer chain polymeric species. The oil will hold this material in solution until a saturation point is reached and the resulting “sludge” drops out on cooler parts of the system (often during shut-down). Overtime, the sludge turns into varnish and eventually a lacquer as temperatures increase.

 

Gas Turbines

For most large gas turbine frame units, high operating temperature is the leading cause of premature turbine oil failure. The drive for higher turbine efficiencies and firing temperatures in gas turbines has been the main incentive for the trend toward more thermally robust turbine oils. Today’s large frame units operate with bearing temperatures in the range of 160ºF to 250ºF (71ºC to 121ºC).

Next-generation frame units are reported to operate at even higher temperatures

Hydro Turbines

Hydro turbines typically use ISO 46 or 68 R&O oils. Demulsibility and hydrolytic stability are the key performance parameters that impact turbine oil life due to the constant presence of water. Ambient temperature swings in hydroelectric service also make viscosity stability, as measured by viscosity index, an important performance criterion.

 

Aero-Derivative Gas Turbines

Aero-derivative gas turbines present unique turbine oil challenges that call for oils with much higher oxidation stability. Of primary concern is the fact that the lube oil in aero-derivative turbines is in direct contact with metal surfaces ranging from 400ºF to 600ºF (204ºC to 316ºC). Sump lube oil temperatures can range from 160ºF to 250ºF (71ºC to 121ºC).

These compact gas turbines utilize the oil to lubricate and to transfer heat back to the lube oil sump. In addition, their cyclical operation imparts significant thermal and oxidative stress on the lubricating oil. These most challenging conditions dictate the use of high purity synthetic lubricating oils. Average lube oil makeup rates of .15 gallons per hour will help rejuvenate the turbo oil under these difficult conditions.

Generator bearing sets typically use an ISO 32 R&O or hydraulic oil. The lower pour points of a hydraulic vs. an R&O oil may dictate the use of a hydraulic oil in cold environments.

Steam Turbines

When a steam turbine oil fails early through oxidation, it is often due to water contamination. Water reduces oxidation stability and supports rust formation, which among other negative effects, acts as an oxidation catalyst.

Varying amounts of water will constantly be introduced to the steam turbine lubrication systems through gland seal leakage. Because the turbine shaft passes through the turbine casing, low-pressure steam seals are needed to minimize steam leakage or air ingress leakage to the vacuum condenser.

Water or condensed steam is generally channeled away from the lubrication system but inevitably, some water will penetrate the casing and enter the lube oil system. Gland seal condition, gland sealing steam pressure and the condition of the gland seal exhauster will impact the amount of water introduced to the lubrication system.

Typically, vapor extraction systems and high-velocity downward flowing oil create a vacuum which can draw steam past shaft seals into the bearing and oil system. Water can also be introduced through lube oil cooler failures, improper powerhouse cleaning practices, water contamination of makeup oil and condensed ambient moisture.

Excess water may also be removed on a continuous basis through the use of water traps, centrifuges, coalescers, tank headspace dehydrators and/or vacuum dehydrators. If turbine oil demulsibility has failed, exposure to water-related lube oil oxidation is then tied to the performance of water separation systems.

 

Yet turbine operators have had problems removing water from in-service oils, indicating a change in either the water or the oil. Did the water become less polar, or did the oil become more polar? Under normal conditions, it is nearly impossible to make water nonpolar, so it must mean that oil becomes polar. A polarity shift mechanism occurs in a turbine while it is in service that results in increased turbine oil polarity. This increases the amount of water that can be dissolved into the oil.

The chemical reactions that cause this change in the oil are complex, but the process can be described in a simple four-step mechanism that results in the polarity increase of the turbine oil:

  • Step 1: Infiltration
  • Step 2: Catalysis (galvanic reactions)
  • Step 3: Oxidation & hydrolysis
  • Step 4: Emulsification.
Formation of varnish and sludge

Inlet steam temperatures can be in the range 216-288°C. Some of this temperature is transmitted to the turbine main bearings, producing the perfect conditions for accelerated deterioration of the oil, especially when contaminants are introduced into the oil. When steam turbine oil is exposed to entrained gases, water contamination and elevated temperatures for extended time intervals, it causes thermal breakdown, oxidation and hydrolysis of the oil that ultimately results in advanced forms of lubricant degradation called sludge and varnish. Certain additives – called antioxidants or oxidation inhibitors – are included in steam turbine oil formulations to help improve oxidation stability. Unfortunately, the use of improper antioxidants has also been shown to contribute to sludge and varnish formation.

The oxidation mechanism for lubricants has been well documented. Oxidation is the reaction of lubricant base stock with oxygen, which leads to degradation byproducts forming in the lubricant. The following is a simplified depiction of this process.

“RH” represents a hydrocarbon molecule, such as oil. “R·” is a hydrocarbon free radical. “O2” is oxygen. “RO2·” is an alkylperoxy radical. “RO2H” is a hydroperoxide (sometimes called a carboxylic acid). “RO·” is an alkyloxy radical. “·OH” is a hydroxy radical. “RO2R” represents nonradical products. R-R represents polymerised hydrocarbons formed when two hydrocarbon free radicals react. The outcome reactions are the formation in the oil of oxygen-containing products such as acids, esters, alcohols, ketones, polar compounds and polymeric materials.

 

 It was stated earlier in this paper that oxygen is polar, like water. Metal parts of a steam turbine are also polar. Polar compounds are attracted to one another; degraded lubricants can have a heightened affinity toward the metal turbine parts, where they will collect as a sticky plastic-like material called varnish, as shown in Figure

 

 

Antioxidants function by reacting with lubricant degradation precursors during the propagation or decomposition stages, thereby slowing down the attack of the oil by oxygen. Sometimes, degraded antioxidant compounds (especially PANA – phenyl-alpha-naphthylamine – types) can also begin to accumulate into high molecular weight materials in the oil and deposit on metal parts as varnish. When large quantities of varnish accumulate in the body of the oil, they begin to precipitate out of solution into a thick viscous layer called sludge, as illustrated in Figure 3. Hydrolysis is another degradation mechanism by which varnish and sludge are formed in a turbine. It is a reaction of oxygenated esters and ketones (in used turbine oil) with a hydroxy group in water. (In a process called dissociation, water naturally breaks down into a weak acid and a hydroxy group.) Hydrolysis occurs as a reaction between the used turbine oil and the hydroxy group to make the lubricant have a stronger affinity to water and to metal turbine parts. This reaction step also increases the oil’s tendency to emulsify with water, thereby increasing the rate of oil degradation and making water removal even more difficult.

Turbine Oil Formulation

Unlike motor oils, which may contain 20 to 30 percent additives, typical turbine oil formulations contain approximately 99 percent base fluid and only one percent additive.

Turbine oil formulations are relatively simple; they are a mixture of the following ingredients: Base oil, corrosion inhibitors, oxidation inhibitors, defoamants, and demulsifiers. The base oil is usually 97 percent or more of the turbine oil formula. Additives are blended into the base oil at low levels to protect both the oil and the turbine parts. Additives should be chosen so that they provide optimized performance in the turbine

Types of Lubricant Additives

There are many types of chemical additives mixed into base oils to enhance the properties of the base oil, to suppress some undesirable properties of the base oil and possibly to impart some new properties.

Additives typically make up about 0.1 to 30 percent of the finished lubricating oil, depending upon the target application of the lubricant.

Conventional Lubricant Additives

These include the following general types of additives:

Anti-oxidants

Oxidation is the general attack of the weakest components of the base oil by oxygen in the air.  It occurs at all temperatures all of the time but is accelerated at higher temperatures and by the presence of water, wear metals and other contaminants. 

It ultimately causes acids (which produce corrosion) and sludge (which results in surface deposits and viscosity to increase) to form.  Oxidation inhibitors, as they are also called, are used to extend the operating life of the oil. 

They are sacrificial additives that are consumed while performing their duty of delaying the onset of oxidation, thus protecting the base oil.  They are present in almost every lubricating oil and grease.

Rust and Corrosion Inhibitors

Rust Inhibitor

These additives reduce or eliminate internal rust and corrosion by neutralizing acids and forming a chemical protective barrier to repel moisture from metal surfaces. 

Some of these inhibitors are specific to protecting certain metals. Therefore, an oil may contain several corrosion inhibitors.  Again, they are common in almost every oil and grease.  Metal deactivators are another form of corrosion inhibitor.

Anti-foaming Agents

Anti-foaming Agents

The chemicals in this additive group possess low interfacial tension, which weakens the oil bubble wall and allows the foam bubbles to burst more readily.  They have an indirect effect on oxidation by reducing the amount of air-oil contact. 

Some of these additives are oil-insoluble silicone materials that are not dissolved but rather dispersed finely in the lubricating oil.  Very low concentrations are usually required.  If too much anti-foaming additive is added, it can have a reverse effect and promote further foaming and air entrainment.

 

Demulsifiers

Demulsifier additives prevent the formation of a stable oil-water mixture or an emulsion by changing the interfacial tension of the oil so that water will coalesce and separate more readily from the oil.  This is an important characteristic for lubricants exposed to steam or water so that free water can settle out and be easily drained off at a reservoir.

 

 

 

 

 Achieving long-term production success requires testing in-service oil on regular intervals to detect degradation issues early enough so they do not lead to costly or catastrophic consequences. These tests should be done by an experienced lab and monitored by the turbine professional. By taking this proactive approach, maintenance professionals will help promote optimized equipment efficiency and generate valuable cost savings.

A  turbine oil’s most important functions are to:

  • Lubricate bearings, both journal and thrust. Depending on the type of installation, this also may include the hydraulic control system, oil shaft seals, gears and flexible couplings.
  • Provide efficient cooling.
  • Prevent sludge, rust and corrosion while in service.

Maintenance professionals need to evaluate and monitor several integral properties of their steam turbine oil to achieve these optimal performance characteristics. Some of these attributes include viscosity, viscosity index, demulsibility, foam resistance, rust and corrosion prevention and oxidation stability.

Viscosity – Viscosity is the primary requirement for selecting a steam turbine oil. Using a product that has the correct viscosity will provide the necessary film thickness to reduce friction between moving parts. Different types of turbines may require oils with different viscosity ranges to promote optimum film thicknesses. Generally, smaller turbines and marine power propulsion turbines, which rotate at speeds greater than 3,000 rpm, require an oil with a viscosity of ISO VG 22-32. However, their larger counterparts that operate at relatively lower speeds (less than about 3,000 rpm), require an oil whose viscosity ranges from ISO VG 32 up to ISO VG 100.

Viscosity Index – The viscosity index (V.I.) indicates the effects that temperature change can have on a lubricant’s viscosity. The V.I. value is calculated from a fluid’s viscosity at two temperatures; 100 F and 212 F (40 C and 100 C). The higher the V.I. value, the less the oil’s viscosity changes with temperature. Fluids generally become less viscous as temperatures increase; this is almost always the case with oils. Thus, an oil’s formulation is less likely to be compromised under drastic changes in temperature if its V.I. is high enough for the application. Quality turbine oils frequently will have a V.I. of at least 95. Many commercially available turbine oils can have V.I.s higher than 115.

Demulsibility – Demulsibility is an oil’s ability to separate from water. Water can appear in solution, free or emulsified form in oil. All three forms of water are undesirable and must be controlled.

Water contamination promotes oil degradation, chemical corrosion and bearing fatigue. Each condition compromises a lubricant’s capability to perform properly. Many different sources of water contamination exist in a steam turbine. Examples can include condensation of humid air in reservoirs, steam leaks through the turbine gland seals or faulty oil coolers. Good demulsibility is critical to an oil’s success. ASTM D-1401 is used to measure demulsibility. The test requires a mixture of 40 millileters (ml) of distilled water with 40 ml of oil to be stirred for 5 minutes at 54 C. The time for the emulsion to separate to 3 ml of emulsion remaining is recorded. A typical passing result for a new turbine oil is 15 minutes.

The demulsibility of an oil in service can be affected by the presence of contaminants, such as mineral sediments like rust, paint or dust, and by polar organic compounds formed due to oil degradation. Additionally, mixing turbine oils with other lubricants containing high concentrations of detergents and dispersants commonly found in engine oils must be avoided to preserve the oil’s ability to readily separate from water. A small amount of engine oil in some cases can completely destroy a turbine oil’s demulsiblity properties.

An onsite visual inspection is usually the simplest way to test for existing water content in an oil. Take an oil sample in a clear container and hold it up in front of your watch. The oil becomes hazy with the presence of water at approximately 500 parts per million (ppm). If the watch face is visible, the water content is normally less than 300 ppm.

Maintenance professionals can also consult with an expert oil analysis partner to conduct a Karl Fischer Test (ASTM D-6304). This test measures the water content in an oil by titration and is reported either in parts per million or percentage by volume. Ensure that the lab you are using is well versed in testing turbine oils, understands their formulation and has data quality integrity and management systems.

Foam Resistance – The presence of foam entrained in the turbine reservoir is not unusual and is generally of little concern. However, when excessive amounts of entrained air and stable foam accumulate in the oil, foam can overflow on top of the reservoir. And foam introduced into the circulating system can damage pumps and bearings or cause sluggish operation of hydraulic control systems.

Main causes leading to excessive air entrainment and foam include:

  • Air intake in suction side of the pump
  • Low oil level in reservoir
  • Excessive splashing of oil returning to the main reservoir
  • Insufficient size of oil return lines
  • High temperature differences between the oil that is replaced and the one that is in service
  • Excessive pressure changes that allow dissolved air to release from the oil.

In a well-formulated oil, the foam should dissipate or remain at minimum stable levels while residing in the main reservoir. Turbine oils typically have an anti-foam additive package that assists with the breakdown of foam. However, excessive amounts of anti-foam additives can actually lead to an increased foaming tendency and increased air separation times. A lubricant with the right balance of base stocks and additives helps avoid these types of problems. Consulting a lubrication specialist with application-specific expertise can help maintenance professionals gain insight into making a selection with the appropriate air release and foaming characteristics.

Rust and Corrosion – Chemical corrosion and rust formation are mentioned together, but they actually represent two different mechanisms of metal degradation. Chemical corrosion occurs when strong acids or bases attack metal surfaces. Rust is a metallic oxide formation that appears when oxygen, usually in the presence of water, comes into contact with a metal for prolonged periods. To prevent both from forming, rust preventive and metal passivating additives are typically added to properly formulated turbine oils. These are the “R” in the R&O additive system, for rust and oxidation. These agents act by preferentially attaching themselves to the metal surface, forming a protective coating.

As with antifoamants, a balanced formulation approach is equally important. Excessive amounts of rust and corrosion inhibitors can interact unfavorably with other lubricant additives and properties that can then affect resistance to oxidation, demulsibility and air release. It is important to understand that most lubricant additives are surface acting, competing for the metal surface of the steam turbine’s bearings.

Oxidation Stability – Steam turbine oil resides in the machine’s reservoir for extended periods where it is exposed to oxygen, which can have a deleterious effect on a lubricant’s performance capabilities. Thus, oxidation resistance is a vital property to look for when selecting a steam turbine oil.

Oxidation is the reaction of hydrocarbon molecules that form when oxygen is introduced to the base fluid of an oil. The rate of oxidation increases exponentially as temperature rises and with the presence of metallic contaminants. An increase of around 10 C in the oil’s temperature effectively doubles the oxidation rate. Copper, bronze, brass and iron contaminants are typical materials that catalyze the oxidation reaction.

From a practical standpoint, poor oxidation resistance shortens the oil’s service life. Additionally, as the oil oxidizes, foam control, demulsibility and air release will likely be compromised. Sludge and deposits can form in more severe cases, impeding proper lubrication and hydraulic control of the turbine.

 

 

 

 

  • Challenges
  • Production Quality
  • Used Lube Tests
  • Case Studies and ROI
  • Customers and Testimonial

The heavy loads, high speeds and dirty, wet conditions make pulp and paper production a tough environment for any machine. Lubrication oil provides a thin layer of protection between moving metal parts. This layer is often on a few microns thick, so maintaining oil cleanliness is paramount. Water, dirt, sawdust and metal particles can interfere with that microlayer of lubrication oil and damage or destroy your valuable equipment.

Consistent and frequent oil analysis is the best defense against failures and costly downtime. Not only can oil analysis prevent failures, it can also let you know that it's safe to extend the lifetime of your oil, saving considerable money on new oil, labor, filters and disposal of lubrication oil.

Typical Tests

 Wear

Particle count - a high particle count or a rapid increase in particles can foreshadow an imminent failure. 

Particle composition - it is often important to understand the elemental composition of particles in order to find out where they came from. Optical Emission Spectroscopy gives the user elemental information for up to 32 elements, from Li to Ce (varies with application).

Particle type - The size, shape and opacity of particles is used to determine if they are from cutting wear, sliding wear, fatigue wear, nonmetallic or fibers. This allows operators to determine the type of wear debris, wear mode and potential source from internal machinery components.

Ferrous wear - Ferrous wear measurement is a critical requirement for monitoring machine condition. The high sensitivity magnetometer measures and reports ferrous content in ppm/ml, and provides ferrous particle count and size distribution for large ferrous particles.

 Chemistry

Total Acid Number (TAN) - TAN is measured to determine the corrosive potential of lubrication oils. If the TAN gets too high the oil can induce corrosion of machine parts and should be changed.

Viscosity - The main function of lubrication oil is to create and maintain a lubrication film between two moving metal surfaces. Insuring the viscosity is within recommended ranges is one of the most important tests one can run on lube oil. 

 Contamination

Water - Water contamination in industrial oils can cause severe issues with machinery components. The presence of water can alter the viscosity of a lubricant as well as cause chemical changes resulting in additive depletion and the formation of acids, sludge, and varnish.